
2003 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

1

4. This question involves reasoning about the code from the Marine Biology Case Study. Please reference a copy of the
code.

The marine biologists want to study a species of fish that eats algae. Any position in the environment grid can contain
zero or more units of algae. If there is any algae at a fish’s location, the fish eats one unit of algae and does not move;
otherwise, the fish does not eat. If this is the third consecutive step in which the fish has not eaten, then the fish dies and
is removed fro m the environment. If the fish does not eat and does not die, it moves to a position among its empty
neighbors that contains the most algae.

We represent the algae by adding a matrix of integers to the private data of the Environment class. This matrix is the
same size as myWorld, and each entry represents the number of units of algae at that location. We add two public
member functions to the Environment class, as well as modifying the Environment constructor to initialize
myAlgae.

// Added these functions to the Environment class

 public int NumAlgaeAt(Location loc)
 //precondition: loc is a valid Location in the environment
 //postcondition: returns the number of units of algae at loc

 public void RemoveAlgae(Location loc, int numUnits)
 //precondition: algae at Location loc exceeds numUnits
 //postcondition: algae at Location loc has been reduced by numUnits

// Added this data member to the Environment class
 private int[][] myAlgae;

2003 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

2

We modify the Fish class by adding a private data member to keep track of how long since the fish ate any algae. We
also add public member function Go that encapsulates all of the actions of a fish for one step of the simulation, and we
modify the move function so that the fish moves to the position among its empty neighbors that has the most algae. In
order to do this we add private member function MostAlgae to the Fish class.

// Added these functions to the Fish class

 public void Go()
 //precondition: this Fish is stored in environment() at location()
 //postcondition: if there was algae at location(), this Fish at and
 // one unit of algae has been removed from
 // location(); otherwise, if this was the third
 // consecutive step that this Fish did not eat,
 // then this fish has been removed from
 // environment(); otherwise, this Fish moved.
 // myStepsSinceFed has been updated.

 private Location MostAlgae(ArrayList nbrs)
 //precondition: nbrs.size() > 0, this Fish is in Environment
 // environment()

 //postcondition: returns a Location from nbrs that contains the
 // most algae.

// Modified these functions in the Fish class (changes are in bold)
 private void move()
 //postcondition: this Fish tried to move to the adjacent space to
 // location() with the greatest number of algae in
 // environment().

// Added this data member to the Fish class

 private int myStepsSinceFed; // steps since this fish last ate

(a) Write the Environment member function NumAlgaeAt, which is described as follows.
NumAlgaeAt should retun the number of units of algae at Location loc.

Complete the function NumAlgaeAt below.

 public int NumAlgaeAt(Location loc)
 //precondition: loc is a valid Location in the environment
 //postcondition: returns the number of units of algae at loc
 {

return myAlgae[loc.row()][loc.col()];

 }

2003 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

3

(b) Write the Fish member function MostAlgae, which is described as follows. MostAlgae should return a
Location from nbrs that contains the most algae. If more than one position contains the maximum amount,
any of those positions may be returned.

In writing MostAlgae, you may use any of the Environment public member functions, including
NumAlgaeAt. Assume that NumAlgaeAt works as specified, regardless of what you wrote in part (a).

Complete the function MostAlgae below.

 private Location MostAlgae(ArrayList nbrs)
 //precondition: nbrs.size() > 0, this Fish is in Environment
 // environment()
 //postcondition: returns a Location from nbrs that contains the
 // most algae.
 {

int mostPos=0;

for(int i=1; i<nbrs.size(); i++)
{
 int here=environment().NumAlgaeAt((Location)nbrs.get(i));
 int old=environment().NumAlgaeAt((Location)nbrs.get(mostPos));
 if(here>old)
 mostPos=i;
}
return (Location)nbrs.get(mostPos);

 }

2003 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

4

(c) Write the Fish member function Go, which is described as follows. If there is algae at the fish’s current

Location, the fish should eat one unit of algae and not move. If there is no algae and this is the third
consecutive step in which the fish has not eaten, Go will cause the fish to die by calling the Environment
member function RemoveFish. If the fish does not eat and does not die, then the fish should move to a
neighboring location with the most algae. Go should update the state of the Environment and the state of the
Fish appropriately.

In writing Go, you may use any member function from the Marine Biology Case Study, including those added
at the beginning of the question. Assume that the Fish member function move has been modified to work
correctly and that the Environment member function NumAlgaeAt and the Fish member function
MostAlgae work as specified, regardless of what you wrote in parts (a) and (b).

Complete function Act below.

 public void Go()
 //precondition: this Fish is stored in environment() at location()
 //postcondition: if there was algae at location(), this Fish at and
 // one unit of algae has been removed from
 // location(); otherwise, if this was the third
 // consecutive step that this Fish did not eat,
 // then this fish has been removed from
 // environment(); otherwise, this Fish moved.
 // myStepsSinceFed has been updated.
 {

if(environment().NumAlgaeAt(location())>0)
{
 environment().RemoveAlgae(location(),1);
 myStepsSinceFed=0;
}
else if(myStepsSinceFed>=3)
{

environment().remove(this);
 return;
}
else
{
 move();
 myStepsSinceFed++;
}
environment().recordMove(this,location());

 }

